Given performance values \(p_1, \ldots, p_n\) of \(n \geq 3\) algorithms, this function first sorts the values in increasing order resulting in the order statistics \(p_{(1)}, \ldots, p_{(n)}\), i.e. \(p_{(i)}\) is the \(i\)th largest value. Next the function calculates the scalar fitness value implementing the following formula: \( f(p_1, \ldots, p_n) = \sum_{i=2}^{n-1} \left(p_{(i+1)} - p_{(i)}\right) \cdot \left(p_{(i)} - p_{(i-1)}\right). \)

fitness_diverse_noorder(x, maximize = FALSE)

Arguments

x

[numeric]
Vector of at least two performance values.

maximize

[logical(1)]
Is the goal to maximize performance values? Defaults to FALSE.

Value

[numeric(1)]