Default Gaussian mutation operator known from Evolutionary Algorithms. This mutator is applicable only for representation="float". Given an individual \(\mathbf{x} \in R^l\) this mutator adds a Gaussian distributed random value to each component of \(\mathbf{x}\), i.~e., \(\tilde{\mathbf{x}}_i = \mathbf{x}_i + \sigma \mathcal{N}(0, 1)\).

mutGauss(ind, p = 1L, sdev = 0.05, lower, upper)

Arguments

ind

[numeric] Numeric vector / individual to mutate.

p

[numeric(1)] Probability of mutation for the gauss mutation operator.

sdev

[numeric(1) Standard deviance of the Gauss mutation, i. e., the mutation strength.

lower

[numeric] Vector of minimal values for each parameter of the decision space.

upper

[numeric] Vector of maximal values for each parameter of the decision space.

Value

[numeric]

See also

Other mutators: mutBitflip, mutInsertion, mutPolynomial, mutScramble, mutSwap, mutUniform